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Abstract. We propose a method for bulk modulus calculations of solids based on perturbation
self-consistency within the local density functional. The essential assumption is that a finite
scaling is applied to the one-electron wavefunction when the solid adjusts to a new distorted
structure under pressure. Thus the one-electron potential of a deformed structure near equilibrium
can be obtained by performing a scaling transformation to charge density directly. The method
is formulated within the linear muffin-tin orbital method in the atomic sphere approximation
and applied to the calculation of bulk moduli ofβ-SiC, FCC Al, BCC Li, L12 Al 3Li and an
ordered FCC Al7Li superlattice. The bulk modulus calculated from a single self-consistency is
in reasonably good agreement with that of a full self-consistent calculation. Our results for Al–Li
systems confirm that the addition of lithium to FCC Al causes the bulk modulus to decrease.

1. Introduction

Density functional theory (DFT), originally formulated in the 1960s [1], has since become
the most widely used method for electronic structure and total-energy (TE) calculations. The
local-density approximation (LDA) to exchange and correlation has achieved great success
in describing the properties of solids. Accurate band-structure calculations make it possible
to obtain reliable TEs of a crystal in the ground state. The bulk moduli could in principle
be obtained through extensive calculations of the TE versus volume with subsequent fitting
and differentiation, but it is time consuming and sometimes difficult to obtain accurate
bulk moduli. Recently, the stress theorem which gives analytic expressions for the stress
tensor has been derived [2]. The great simplification is that many inequivalent forces can
be calculated from a single self-consistent calculation. The determination of equilibrium
lattice parameters is straightforward, e.g., a cubic lattice constant.

A general expression for the calculation of elastic constants has been derived by Fucks
and Peng [3] with the help of the self-consistent field 50 years ago. In spite of its
mathematical beauty, it is difficult to apply to realistic solids. In this paper we suggest
a method for bulk modulus calculations based on perturbation self-consistency. Only one
kind of perturbation is considered, i.e. homogeneous and isotropic strains (compression or
tension). The scheme is formulated within the linear muffin-tin orbital (LMTO) method
in the atomic sphere approximation (ASA) [11]. After the self-consistent calculation of
a system, the electronic charge density of the system with a small deformation can be
constructed from the scaling transformation of valence wave-functions. Then, according to
the LDA, a new starting single-particle potential is obtained. In this way the sum of the
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perturbation potential and the original potential is obtained. This is somewhat different from
the traditional perturbation self-consistent theory [4]. Through the scaling of wavefunctions,
the calculation of bulk moduli can be almost directly performed, i.e. by a single self-
consistent calculation. As shown below, the direct bulk modulus is close to that of full
self-consistency.

To demonstrate our method, we choose the Al–Li systems because of their great
technological importance and theoretical interest. The zincblende-structure silicon carbide
(β-SiC) is chosen to check the efficiency when our method is applied to non-metallic
materials. It has recently been recognized that Al–Li alloys are particularly useful and
potential candidates for aerospace materials because of their superior strength-to-weight
ratio [5]. Young’s modulus Y for Li metal is only about 5–10 GPa, and this value is
one order of magnitude smaller than that of Al, i.e. about 66 GPa. However, a small
amount of Li addition causes a drastic increase in Young’s modulus for Al-based alloys.
The explanation of the mechanism of solid-solution hardening and the acquisition of other
properties of Al–Li alloys have stimulated strong interest among physicists [6–9]. Our
results show that the addition of lithium to FCC aluminium causes the bulk modulus to
decrease, in good agreement with [6-8] and experiment [10].

The present paper is organized as follows. In section 2, we will give our perturbation
self-consistent method and formulate it within the LMTO ASA method. In section 3, the
results on the bulk moduli ofβ-SiC, FCC aluminium, BCC lithium, the L12 phase of Al3Li
and an ordered FCC Al7Li supercell are presented, and some discussion is given. Finally,
we give a brief summary in section 4.

2. Theoretical method

We restrict ourselves to the DFT within the LDA. The many-particle problem is transformed
into a single-particle problem. The Schrödinger equation is expressed as (in Rydberg atomic
units) [

−∇2 + Veff (r)
]
ϕi(r) = εiϕi(r) (1)

whereVeff (r) is the effective single-particle potential composed of a Coulomb term and an
exchange–correlation term:

Veff (r) = φ(r) + Vxc(r). (2)

In the LDA, the potential is uniquely determined by the charge density which is obtained
by summing over occupied states:

ρ(r) =
occ∑
j

∣∣ϕj (r)
∣∣2

. (3)

The Coulomb term includes the attraction of fixed nuclei and the electron–electron repulsion:

φ(r) = V (r)

∫
2ρ(r) dr′

|r − r′| . (4)

We use a form of the Hedin–Lundqvist [12] or the Slater [13] Xα for the LDA. In order to
obtain the single-particle potential of the system with deformation, we make the following
scaling transformation to the valence wavefunction. For a small homogeneous deformation,
the particle coordinates are transformed as

riα → riα +
∑

β

εαβriβ (5)
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whereεαβ is a symmetric (i.e. rotation-free) strain tensor. The wavefunction is ‘stretched’
as

ϕε(r) = det(I + ε)−1/2ϕ((I + ε)−1 · r) (6)

where the pre-factor preserves the normalization ofϕε . Only isotropic strain is considered
in the calculation of bulk moduli.

In our practical calculation of bulk moduli, the scaling transformation of the
wavefunction is performed separately. The part near the nuclei is maintained while the
outer part is transformed as mentioned above. The wavefunction with perturbation is
obtained through subsequent smooth joining and normalization. With the core wavefunction
unchanged, the new charge density can be obtained by summing over occupied states
(assuming that the occupations of corresponding states are maintained). Then the new
starting potential for self-consistent iterations can be constructed from (2). Supposing
that the self-consistent calculation of a system has been accomplished, the pressure of
the system with a small compression or tension can be obtained from further iteration. As
the calculations show, the starting potential constructed in this way is quite close to that
of self-consistency. The bulk modulus can be calculated almost directly assuming that the
pressure is calculated in a direct way.

Applying the present scheme to the LMTO ASA method, we consider only homogeneous
and isotropic strain which can be regarded as a scalar. Because the electronic number density
is the sum of the occupied states, a scaling transformation can be performed on the charge
density directly. The one-electron potential in thelth(l = 0) cell inside thej ′th atomic
sphere is expressed as

Vj ′(r) = 2

r

∫ r

0
4πr ′2ρj ′(r′) dr ′ +

∫ RMT,j ′

r

8πr ′ρj ′ dr ′ − 2Zj ′

r

+
∫ ∞

RMT,j ′
8πr ′ρ(r ′) dr + (−1)

′∑
j+l

2Zj

rj+l

+ Vexc (7)

where the first three terms denote the contributions of the nucleus and electrons inside the
atomic sphere, and the fourth and fifth terms are the potential of the charged environment,
i.e. the Madelung potential, which is readily obtained by the application of Ewald summing
technology. The last term is the exchange–correlation potential, which is approximated with
the LDA. In this way, the sum of the perturbation and the original potential is obtained.
For self- consistent calculation, potential parameters are required by the LMTO method. By
solving the Schr̈odinger or Dirac equation at the energy reference point of the equilibrium
state inside an atomic sphere, the four potential parameters can be obtained readily. There
are eigenvalue shifts due to perturbation but, for linear method, the small shifts of reference
points are not important. Because of the direct calculation of pressures, the bulk modulus
can be calculated directly from numerical differentiation. The method presented here is
different from a TE calculation, i.e. it needs no parameters to fit the TE. Thus our method
could be called a parameter-free method for bulk modulus calculations.

3. Results and discussion

We first use the Hedin–Lundqvist parametrization for exchange–correlation to calculate the
bulk moduli ofβ-SiC, FCC Al, BCC Li, L12 Al 3Li and ordered Al7Li in an FCC supercell,
which is constructed with twice the lattice spacing needed for one atom, with the coordinates
of eight atoms in the Wigner–Seitz cell as follows (in lattice constants): Al (0,1/4,1/4),



7202 Y Xie and R Han

(1/4,0,1/4), (1/4,−1/4,0), (1/4,1/4,0), (1/4,0,−1/4), (0,1/4,−1/4), (0,0,0), Li(1/2,0,0).β-SiC
has a zincblende structure similar to that of diamond with half of the carbon atoms replaced
by silicon atoms. In order to make the ASA rational forβ-SiC, two empty atomic spheres
with atomic numberZ = 0 are included in each unit cell positioned in the empty tetrahedral
sites. The MTOs up tol = 2 are included for Si, Al and Li, while for C we use those
up to l = 1, and for the empty sphere only that ofl = 0. The number ofk points used
for the k-space integration is 89 for FCC, 84 for L12 , 91 for BCC in the one-fortyeighth
wedge of the first Brillouin zone. In order to calculate the bulk moduli, we chose the values
of ε as ±0.004. After the self-consistent calculation of a system at equilibrium lattice
constant, the one-electron potentials and potential parameters of the two deformed states are
constructed as mentioned in the previous section. Three pressures can be obtained from a
single self-consistent calculation and then the bulk modulus is calculated from three-point
numerical differentiation at the equilibrium point. Three values of pressure give by quadratic
interpolation the final lattice constant where the pressureP = 0, as well as the bulk modulus
from the slope of pressure. We call the bulk moduli obtained in this way as direct bulk
moduli. For comparison, we also calculated the two deformed states self-consistently and
then obtained the self-consistent bulk moduli. The calculated equilibrium lattice constants
a0, the direct bulk moduliBd and the self-consistent moduliBc are listed in table 1, showing
that the direct bulk moduliBd are in good agreement with the self-consistent moduoliBc.
The discrepancies are less than 10%. These results are stimulating. Through the scaling
of the charge density, we have almost calculated the bulk moduli directly. There must be
some physical mechanism behind the phenomenon. At least it can be concluded that the
elastic properties of solids mainly depend on the overlapping of valence electrons. In our
calculations within the ASA, the bulk moduli mainly depend on the charge density near the
spherical surface. The calculated equilibrium lattice constant forβ-SiC is smaller than that
of Cheonget al [14] (4.361Å) and that of experiment (4.360̊A), while the bulk modulus is
larger than that of Cheonget al (212 GPa) and that of experiment (224 GPa). The electronic
structure calculation based on the LDA usually tends to underestimate the lattice constant.
It is not surprising that the LDA overestimates the bulk modulus.

Table 1. The calculated equilibrium lattice constantsa0, the direct bulk moduliBd and the
self-consistent moduliBc.

a0 Bd Bc

Systems (au) (GPa) (GPa)

β-SiC 8.18 272 258
FCC Al 7.49 93.8 99.3
BCC Li 6.33 15.5 15.9
Al 3Li 7.40 80.6 82.9
Al 7Li 14.88 88.9 90.3

For Al–Li systems, the predicted lattice constants are all smaller than those of
experiment. The experiment lattice constants of BCC Li, FCC Al and L12 Al 3Li are
7.65 au, 6.63 au [15] and 7.5775 au [5], respectively. The error is largest in BCC lithium,
where the lattice constant is 4.5% smaller than experiment. The lattice constants of Al and
Al 3Li are within about 2% of experiment. While some of this is due to the neglect of
zero-point motion and thermal expansion, much of the error, especially in lithium, can be
attributed to problems with the LDA and ASA. The bulk moduli are in reasonably good
agreement with those in the literature except [9], which claimed that the addition of lithium
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to FCC Al causes the bulk modulus to increase, and the enhancement of Young’s modulus is
correlated with bulk modulus increase. Our calculated bulk moduli are larger than found by
other calculations [6–8]. One reason for this may be the choice ofε = ±0.004 beyond the
elastic limit. The results can be improved by choosing more than two deformed states around
equilibrium, e.g. the bulk modulus can be obtained from five-point numerical differentiation
by choosing four deformed states. According to the scaling transformation in the previous
section, a little effort is needed. From direct bulk moduli and full self-consistent moduli,
it can be concluded that the bulk modulus decreases with increasing lithium concentration,
and that the increase in Young’s modulus is due to the anisotropy introduced by the addition
of lithium. Poisson’s ratio decreases from 0.32 in Al to 0.26 in Al7Li [7].

Table 2. The calculate equilibrium lattice constantsa0, the direct bulk moduliBd and the
self-consistent moduliBc using Slater’s Xα approximation to exchange–correlation.

a0 Bd Bc

Systems (au) (GPa) (GPa)

FCC Al 7.650 75.0 80.0
BCC Li 6.630 11.3 11.7
Al 3Li 7.577 66.3 68.7
Al 7Li 15.227 73.2 73.8

Considering that the LDA is in any case an approximation, then we choose the Slater
Xα form to approximate the exchange–correlation functional. Theα-values for Al and Li
are adjusted so that the pure metal lattice constants could be correctly reproduced. This
gives usαAl = 0.676 andαLi = 0.660, quite close to the value for a free-electron gas. In
electronic structure calculations for Al3Li and Al7Li, the sameαAl andαLi are used in the
atomic spheres of Al and Li, respectively. The calculated equilibrium lattice constantsa0,
the direct bulk moduliBd and the full self-consistent moduliBc are listed in table 2. The
lattice constant of Al3Li is reproduced quite well, while that of Al7Li lies in a reasonable
region between Al and Al3Li. The bulk moduli of Al7Li and Al3Li are still smaller than
that of pure aluminium. The same in the change in the trend bulk moduli for Al–Li systems
can be found from the direct bulk moduli, which also confirms that the addition of lithium
to FCC aluminium causes the bulk modulus to decrease.

The equilibrium lattice constants and bulk moduli could in principle be obtained through
extensive calculations of the TE versus volume by fitting the energy curve with an assumed
equation of state and subsequent differentiation. The quality of the results relies on the
accuracy of the TE and the form of the assumed equation of state. We would like to
emphasize that the quality of the values obtained for the pressure is of the same order of
accuracy as the quality of the band-structure calculations in the framework of the LMTO
ASA approach and that, at the same time, the results of TE calculations are much less
accurate. Bulk modulus calculations from pressure differentiation are more reliable than the
TE fitting and differentiation. The results of [9] are doubtful because they were obtained
from TE fitting using the augmented spherical wave method which is not sufficiently
accurate. In our bulk modulus calculations, the agreement between the direct bulk moduli
and the full self-consistent moduli reveals interesting information on how electrons respond
to macroscopic strain. Owing to the agreement betweenBd andBc, it can be concluded that
the electronic charge scaling transformation proposed reflects the real response of electrons to
compression. The pressure of a system with deformation obtained from one cycle converges
that of self-consistency to within 10−3 GPa. At least dramatic gains in efficiency are
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achieved in the calculations of bulk moduli with the present method.

4. Summary

We have presented here a method by which the bulk modulus can be calculated directly,
at least efficiently. The bulk moduli ofβ-SiC, FCC Al, BCC Li, L12 Al 3Li and supercell
Al 7Li have been presented. The direct bulk moduli are in good agreement with those of full
self-consistency; the discrepancies are less than 10%. This implies that the elastic properties
of solids mainly depend on the overlapping of valence electrons. The method can be applied
to non-metallic materials as well as metallic materials. Our results confirm that the addition
of lithium to FCC Al causes the bulk modulus to decrease. It should be pointed out that
both direct and full self- consistent bulk moduli show the same trend of a decrease on the
addition of lithium. The method presented here can be applied to new material designing.

Acknowledgments

The authors are grateful to Dr Yi Wang for useful discussions and criticisms. This work
was supported by the China Academy of Engineering Physics Fund Grant.

References

[1] Hohenberg P and Kohn W 1964Phys. Rev.136 B864
Kohn W and Sham L J 1965Phys. Rev.140 A1133

[2] Nielsen O H and Martin R M 1983Phys. Rev. Lett.50 697; 1985Phys. Rev.B 32 3708
[3] Fucks K and Peng H W 1942Proc. R. Soc.A 180 451
[4] Baroni S, Giannozzi P and Testa A 1987Phys. Rev. Lett.58 1861
[5] Lavernia E J and Grant N J 1987J. Mater. Sci.22 1251 and references therein
[6] Podloucky R, Jansen H J F, Guo X Q andFreeman A J 1988Phys. Rev.B 37 5478
[7] Mehl M J 1993Phys. Rev.B 47 2493 and references therein
[8] Guo X Q, Podloucky R, Xu Jian-hua and Freeman A J 1990Phys. Rev.B 41 12 432

Guo X Q, Podloucky R and Freeman A J 1990Phys. Rev.B 42 10 912
[9] Masuda-Jindo K and Terakura K 1989Phys. Rev.B 39 7509

[10] Müller W, Bubeck E and Gerald V 1986Aluminum–Lithium Alloys IIIed C Baker, P J Gregson, S J Harris
and C J Peel (London: Institute of Metals) p 435

[11] Skriver H L 1984 The LMTO Method(New York: Springer)
[12] Hedin L and Lundqvist B I 1971 J. Phys. C: Solid State Phys.4 2064
[13] Slater J C 1974Quantum Theory of Molecules and Solidsvol 4 (New York: McGraw-Hill) ch 1
[14] Cheong B H, Chang K J and Cohen M L 1991 Phys. Rev.B 44 1053
[15] Donohue J 1974The Structure of the Elements(New York: Wiley)


